logo

Periodic Systems and Patterns (Phase-Field-Crystals and Swift-Hohenberg equation)

  1. P. K. Galenko and K. R. Elder, Marginal stability analysis of the phase field crystal model in one spatial dimension. Physical Review B, 83 064113 (2011).
  2. V. Lebedev, A. Sysoeva, and P. Galenko, Unconditionally gradient-stable computational schemes in problems of fast phase transitions. Physical Review E, 83 026705 (2011).
  3. P. Galenko, D. Danilov, and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics. Physical Review E, 79 051110 (2009).

Convective Flow

  1. D.V. Alexandrov, P.K. Galenko, D.M. Herlach, Selection criterion for the growing dendritic tip in a non-isothermal binary system under forced convective flow. J. Crystal Growth, 312 2122 (2010).
  2. R. Lengsdorf, P. Galenko, D.M. Herlach, Measurement of dendritic growth on Al-Ni alloys in reduced gravity. Proceedings 19th ESA Symposium on European Rocket and Baloon Programmes and Related Research, Bad Reickenhall, 7-11 June 2009.
  3. S. Reutzel, H. Hartmann, R. Lengsdorf, P. Galenko, D.M. Herlach, Solidification of intermetallic Ni-Al alloy melts under reduced gravity conditions during parabolic flight experiments: Promising results for MSL-EML onboard the ISS. Proceedings of 59th International Astronautical Congress (IAC). Glasgow, Scotland, September 2008. (Glasgow: IAC, 2008), pp. 593-598.
  4. S. Reutzel, H. Hartmann, P.K. Galenko, and D. M. Herlach, Change of the kinetics of solidification and microstructure formation induced by convection in the Ni-Al system. Applied Physics Letters 91 (2007) 041913.
  5. P. Galenko, D. Herlach, G. Phanikumar, and O. Funke, Phase-field modeling of dendritic growth in droplets processed by electromagnetic levitation. In: Computational Modeling and Simulation of Materials III. Editor: P. Vincenzini (Faenza, Italy: Techna Group Publishers, 2004) p. 565-574.
  6. P. Galenko, D. Herlach, O. Funke, and G. Phanikumar, Phase-field modeling of dendritic solidification: Verification for the theoretical predictions with latest experimental data. In: Solidification and Crystallization. Editor: D.M. Herlach (Weinheim: Wiley-VCH, 2004) p. 52-60.
  7. P.K. Galenko, O. Funke O., J. Wang, and D.M. Herlach, Kinetics of dendritic growth under the influence of convective flow in solidification of undercooled droplets. Materials Science and Engineering A 375-377 (2004) 488-492.
  8. W. Löser, J. Fransaer, L. Granasy, D.M. Herlach, R. Hermann, D. Holland-Moritz, M. Krivilev, M. Kolbe, T. Volkmann, B. Gehrmann, J. Lindemann, E. Adar, S. Zhang, Nucleation and Phase Selection in Magnetic Alloys, In: Microgravity Application Programme - Successful Teaming of Science and Technology, Ed. By A. Wilson, ESA Publications Division, ESTEC, Noordwijk, The Netherlands 2005, pp. 62-71.
  9. W. Löser, R. Hermann, T. G. Woodcock, J. Fransaer, M. Krivilyov, L. Granasy, T. Pusztai, G. Toth, D.M. Herlach, D. Holland-Moritz, M. Kolbe, T. Volkmann, Nucleation and Phase Selection in Undercooled Melts: Magnetic Alloys of Industrial Relevance (MAGNEPHAS). Journal of the Japan Society of Microgravity Application, 25(3) (2008) 495-500.
  10. Y. Detandt , M. Krivilyov, Y. Salhi, D. Vanden Abeele, J. Fransaer, Direct numerical simulation of Taylor-Couette flows in the fully turbulent regime, In "Computational Fluid Dynamics 2006", eds. H. Deconinck, E. Dick, ISBN: 978-3-540-92778-5, Springer (2009), pp. 433-438.
  11. M. Krivilyov, J. Fransaer, Numerical simulation of unsteady flow inside an impulsively started liquid drop, In "Computational Fluid Dynamics 2006", eds. H. Deconinck, E. Dick, ISBN: 978-3-540-92778-5, Springer (2009), pp. 649-654.

Order-disorder transitions

  1. H. Hartmann, D. Holland-Moritz, P.K. Galenko, D.M. Herlach, Evidence of the transition from ordered to disordered growth during rapid solidification of an intermetallic phase. Europhysics Letters, 87(4) 40007 (2009).
  2. S. Reutzel, H. Hartmann, P. Galenko, H. Assadi, and D. Herlach, Non-equilibrium solidification of intermetallic compounds in Ni-Al systems. In: Frontiers in Solidification Science, ed. J. Hoyt, M. Plapp, G. Faivre, Sh. Liu (TMS: USA, 2007) p. 61-65.

Diffusion-limited processes

  1. M. Guerdane, F. Wendler, D. Danilov, H. Teichler, and B. Nestler, Crystal growth and melting in NiZr alloy: Linking phase-field modeling to molecular dynamics simulations. Physical Review B, 81(22) 224108 (2010).
  2. M. Selzer, B. Nestler, and D. Danilov, Influence of the phase diagram on the diffuse interface thickness and on the microstructure formation in a phase-field model for binary alloy. Mathematics and Computers in Simulation, 80(7) 1428-1437 (2010).
  3. D. Danilov, B. Nestler, M. Guerdane, H. Teichler, Bridging the gap between molecular dynamics simulations and phase-field modelling: dynamics of a [NixZr1−x]liquid–Zrcrystal solidification front. Journal of Physics D: Applied Physics, 42(1) 015310 (2009).
  4. B. Nestler, D. Danilov, A. Bracchi, and S. Schneider, A metallic glass composite: Phase-field simulations and experimental analysis of microstructure evolution. Materials Science and Engineering: A, 452-453 8-14 (2007).
  5. P.K. Galenko and D.M. Herlach, Fractals, morphological spectrum and complexity of interfacial patterns in non-equilibrium solidification. In: Complexux Mundi: Emergent Patterns in Nature. Edited by M.M. Novak (Singapore: World Scientific, 2006) p. 199-208.
  6. D. Danilov and B. Nestler, Phase-field modelling of solute trapping during rapid solidification of a Si-As alloy. Acta Materialia, 54(18) 4659-4664 (2006).
  7. D. Danilov and B. Nestler, Phase-field simulations of eutectic solidification using an adaptive finite element method. International Journal of Modern Physics B (IJMPB), 20 (7) 853-867 (2006).
  8. Y. Huang, A. Bracchi, T. Niermann, M. Seibt, D. Danilov, B. Nestler, S. Schneider, Dendritic microstructure in the metallic glass matrix composite Zr56Ti14Nb5Cu7Ni6Be12. Scripta Materialia, 53(1) 93-97 (2005).
  9. D. Danilov, B. Nestler, Phase-field simulations of solidification in binary and ternary systems using a finite element method. Journal of Crystal Growth, 275(1-2) e177-e182 (2005).
  10. B. Nestler, D. Danilov, P. Galenko, Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results. Journal of Computational Physics, 207(1) 221-239 (2005).
  11. D. Danilov, B. Nestler, Dendritic to Globular Morphology Transition in Ternary Alloy Solidification. Physical Review Letters, 93(21) 215501 (2004).
  12. M. Kolbe, X. Liu, T. Volkmann, R. Rostel, P. Galenko, G. Eggeler, B. Wei, D. Herlach, Interaction of solid ceramic particles with a dendritic solidification front. Materials Science and Engineering A, 375-377 524-527 (2004).
  13. P. K. Galenko, M. D. Krivilyov, S. V. Buzilov, Bifurcations in a sidebranch surface of a free-growing dendrite. Physical Review E, 55(1) 611-619. (1997).
  14. V.A. Zhuravlev and P.K. Galenko, Steady-state regimes of solidification in binary systems with heavy and light elements. Russian Metallurgy (Metally), 3 45. (1994).
  15. P.K. Galenko and O.V. Tolochko, The dynamics of dendritic structure formation of an amorphous structure in the nickel-zirconium system. Glass Physics and Chemistry, 19(2) 152 (1993).

To report a problem with the web site, please e-mail vladimir at ankudinov dot org.

For other contact information, see the contact page.